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Meshless Regular Hybrid Boundary Node Method

Jianming Zhang, Zhenhan Yao1

Abstract: The Meshless Local Boundary Integral
Equation (MLBIE) method is a truly meshless one as
it does not need a ‘finite element or boundary element
mesh’, either for variable interpolation or for ‘energy’
integration. The Boundary Node Method (BNM) further
reduces the dimensionality of the problem by one, i.e. it
only requires nodes constructed on the surface. However,
the BNM is not truly meshless, as a background mesh is
needed for boundary integration; and the MLBIE does
not have the advantage of reduced dimensionality as the
BNM. A new Regular Hybrid Boundary Node method
based on a modified functional and the Moving Least
Squares (MLS) approximation, and combining the ad-
vantages of both the MLBIE and the BNM, is presented
in this paper.

The Regular Hybrid Boundary Node Method is formu-
lated in terms of the domain and boundary variables.
The domain variables are interpolated by classical fun-
damental solutions with the source points located outside
the domain; and the boundary variables are interpolated
by Moving Least-Squares (MLS) approximation. The
main idea is to retain the dimensionality advantages of
the BNM, and localize the integration domain to a regu-
lar sub-domain, as in the MLBIE, such that no mesh is
needed for integration. All integrals can be easily evalu-
ated over regular shaped domains (in general, semi-circle
in the 2-D problem) and their boundaries.

Numerical examples for the solution of 2-D Laplace
equation show that the high convergence rates with mesh
refinement and the high accuracy with a small node num-
ber are achievable. The treatment of singularities and
further integrations required for the computation of the
unknown domain variables, as in the conventional BEM
and BNM, can be avoided.
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1 Introduction

Although the FEM and BEM have made great achieve-
ments in solving practical engineering problems, the
interest of pursuing new methods has never decreased
through time, as the mesh-based methods (e.g. FEM
and BEM) have much difficulty in solving problems in-
volving changing domains such as large deformation or
crack propagation; and the task of mesh generation of
a 3-D object with complicated geometry is often ardu-
ous, time-consuming and computationally expensive, in
spite of significant progress has been made in 3-D mesh-
ing algorithms. In recent years, novel computational al-
gorithms, referred to as ‘meshless’ methods, have been
proposed, that largely circumvent the problems associ-
ated with meshing.

The idea of meshless methods was initially introduced
by Lucy as the Smooth Particle Hydrodynamics (SPH)
method for modeling astrophysical phenomena (1977),
although the meshless methods first gained popularity af-
ter the publication of the diffuse element method (Nay-
roles et al., 1992) and the element free Galerkin method
(Belytschko et al., 1994). The element free Galerkin
(EFG) method uses a global symmetric weak form and
the shape functions from the moving least-squires ap-
proximation. Although no mesh is required in the EFG
method for the variable interpolation, background cells
are inevitable for the ‘energy’ integration.

Recently, two meshless methods, the Meshless Local
Boundary Integral Equation (MLBIE) method (Zhu et
al., 1998; Kim and Atluri, 2000; Lin and Atluri, 2000)
and the Meshless Local Petrov-Galerkin (MLPG) ap-
proach (Atluri et al., 1998) have been developed. Both
methods use local weak forms over a local sub-domain
and shape functions from the MLS approximation, and
lead to truly meshless ones, as no ‘finite element or
boundary element mesh’ is required either for the vari-
able interpolation, or for the ‘energy’ integration. All in-
tegrals can be easily evaluated over regularly shaped do-
mains (for example, circles in 2-D problems and spheres
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in 3-D problems) and their boundaries.

Previously, Mukherjee et al. (1997) proposed a mesh-
less method, which they call the Boundary Node Method
(BNM). They combined the MLS interpolants with
Boundary Integral Equations (BIE) in order to retain both
the meshless attribute of the former and the dimension-
ality advantage of the latter. This method only requires
a nodal data structure on the bounding surface of a body
whose dimension is one less than that of the domain it-
self; but this method is not a truly meshless one, as an
underlying cell structure is again used for numerical in-
tegration.

A question arises here– is there possibly a method of
solving boundary value problems, that only requires
nodes constructed on the surface of a domain and re-
quires no cells either for interpolation of the solution
variables or for the numerical integration? This method
will simplify the input data structure greatly, as it has the
dimensionality advantage of the BIE and only requires
scattered nodes on the boundary, compared with the ML-
BIE and MLPG; and it is a truly meshless method, which
does not use any mesh either for interpolation or for in-
tegration, compared with the BNM.

The answer is positive. The new method is called Hybrid
Boundary Node Method (Hybrid BNM)(Zhang et al.),
which combines the MLS interpolation scheme with the
hybrid displacement variational formulation. However,
the Hybrid BNM has a drawback of serious “boundary
layer effect”, i.e. the accuracy of results in the vicinity
of the boundary is very sensitive to the proximity of the
interior points to the boundary. A new Regular Hybrid
Boundary Node method is proposed in this paper. In the
new method, the source points of the fundamental so-
lutions are located outside the domain other than at the
boundary nodes as in the Hybrid BNM or other hybrid
boundary element models. Compared with the Hybrid
BNM, the present method does not involve any singu-
lar integration and the results are no more sensitive to
the proximity of the interior points to the boundary, very
high accuracy can be achieved with a small number of
boundary nodes.

The hybrid boundary element method was first proposed
by Schnack (1987), in which he stressed using the bound-
ary element method to generate a hybrid stress finite ele-
ment model, giving rapid convergence of the results and
accurate solution for stress concentration problems. Du-
mont (1987) has presented a hybrid stress boundary el-

ement formulation based on Hellinger-Reissner princi-
ple with stresses in the domain and displacements on
the boundary as independent functions. DeFigueredo
and Brebbia (1989) have introduced a hybrid displace-
ment variational formulation of BEM, which is based on
a modified functional using three independent variables,
i.e. displacements and tractions on the boundary and dis-
placements inside the domain. This approach uses the
classical fundamental solution to interpolate the displace-
ments in the domain and thus allowing for the transfer of
the domain integrals to the boundary. The resulting sys-
tem of equations is written in terms of boundary displace-
ments only, and has the advantage of being symmetrical,
which is easy to couple with the FEM. In the present pa-
per, the objective is not to obtain the symmetrical system
of equations in terms of boundary displacements, we just
use the hybrid displacement variational formulation and
the interpolation scheme of variables inside the domain.
The variables on the boundary are interpolated by MLS
scheme and a truly meshless RHBNM is achieved.

The following discussion begins with the brief descrip-
tion of the MLS approximation in Section 2. Tak-
ing Laplace equation as an example, the formulation of
RHBNM is developed in Section 3. Numerical examples
for 2-D potential problems are given in Section 4. The
paper ends with conclusions and discussions in Section
5.

2 The MLS approximation scheme for the 2-D Reg-
ular Hybrid Boundary Node method

This section gives a brief summary of the MLS approx-
imation, of which excellent illustrations can be seen in
papers (Belytchko et al. 1996; Lancaster et al. 1981).

The discussion below addresses the solution u of a scalar
problem (Laplace equation) in 2-D. In the view of the fact
that this MLS interpolation scheme will be coupled later
with 2-D hybrid ‘displacement’ variational formulation
which uses three independent variables, of which the ũ
and q̃ are defined as the potential and normal flux on the
1-D bounding surface Γ of a 2-D body Ω, and will be
interpolated by MLS scheme.

The difference of MLS interpolation between the present
approach and the BNM is that in the present approach,
MLS interpolation is independently performed on piece-
wise smooth segments Γi; i = 1;2; � � � ;n which consist
the boundary naturally other than on the whole bound-
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ary Γ. To approximate the functions ũ and q̃ on each Γi

over which a number of randomly located nodes fsIg; I =
1;2; � � � ;N, the MLS interpolants for ũ and q̃ are defined
as

ũ(s) =
m

∑
j=1

pj(s)aj(s) = pT (s)a(s) (1)

q̃(s) =
m

∑
j=1

pj(s)bj(s) = pT (s)b(s) (2)

where s is a curvilinear co-ordinate (here the arc length)
on Γi, p1 = 1 and pj(s); j = 2; � � � ;m are monomials in
s. The monomials pj(s) provide the intrinsic polynomial
bases for ũ and q̃. In the numerical implementation pre-
sented later in this paper, a quadratic background basis is
used, i.e.

pT (s) = [1;s;s2]; m = 3 (3)

The coefficient vector a(s) and b(s) is determined by
minimizing a weighted discrete L2 norm, defined as

J1(s) =
N

∑
I=1

wI(s)
�
pT (sI)a(s)� ûI

�2
(4)

J2(s) =
N

∑
I=1

wI(s)
�
pT (sI)b(s)� q̂I

�2
(5)

where points sI are boundary nodes on Γi, s is the co-
ordinate of an evaluation point E on Γi, N is the number
of boundary nodes in the neighborhood of E for which
the weight functions w(s� sI) > 0. It should be noted
here that ûI and q̂I , I = 1;2; � � � ;N are the fictitious nodal
values other than the nodal values of the unknown ũI and
q̃I in general. This distinction between ûI and ũI (or q̂I

and q̃I) is very important in the view of the fact that MLS
interpolants lack the delta function property.

Solving for a(s) and b(s) by minimizing J1 and J2 in
equation (4) and (5), and substituting them into equation
(1) and (2) gives a relation which may be written as the
form of an interpolation function similar to that used in
the FEM, as

ũ(s) =
N

∑
I=1

ΦI(s)ûI (6)

q̃(s) =
N

∑
I=1

ΦI(s)q̂I (7)

where

ΦI(s) =
m

∑
j=1

pj(s)
�
A�1(s)B(s)

�
jI (8)

with the matrices A(s) and B(s) being defined by

A(s) =
N

∑
I=1

wI(s)p(sI)pT (sI) (9)

B(s) = [w1(s)p(s1);w2(s)p(s2); � � � ;wN(s)p(sN)] (10)

The MLS approximation is well defined only when the
matrix A in equation (9) is non-singular.

The function ΦI(s)is usually called the shape function of
the MLS approximation corresponding to nodal point sI .
From equation (8) and (10), it may be seen that ΦI(s) = 0
when wI(s) = 0. The fact that ΦI(s) vanishes for s not in
the support of nodal point sI preserves the local character
of the MLS approximation.

Several kinds of weight function can be seen in the lit-
eratures, the choice of weight functions and the conse-
quences of a choice in the EFG method are discussed in
some detail elsewhere (Belytchko et al. 1996). Gaussian
weight function corresponding to node sI may be written
as

wI(s) =

(
exp[�(dI=cI)

2]�exp[�(d̂I=cI)
2]

1�exp[�(d̂I=cI)2]
; 0 � dI � d̂I

0; dI � d̂I

(11)

where dI = js� sIj, the absolute value of the distance be-
tween an evaluation point and a node, measured along
Γi, cI is a constant controlling the shape of the weight
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function, and d̂I is the size of the support for the weight
function wI and determines the support of node sI . The
d̂I should be chosen such that d̂I should be large enough
to have sufficient number of nodes covered in the domain
of definition of every sample point (N �m) to ensure the
regularity of A.

3 Development of the Regular Hybrid Boundary
Node method

In this section, the development of the Regular Hybrid
Boundary Node Method is illustrated by the following
potential problem:

u;ii= 0; 8x 2Ω
u = u; 8x 2 Γu

u;i ni � q = q; 8x 2 Γq

(12)

where the domain Ω is enclosed by Γ = Γu +Γq; u and q
are the prescribed potential and normal flux respectively,
on the essential boundary Γu and on the flux boundary
Γq; and n is the outward normal direction to the boundary
Γ, with ni components.

The Regular Hybrid Boundary Node method proposed in
this paper is based on a modified variational principle.
The functions assumed to be independent are:

– potential field in the domain, u;

– boundary potential field, ũ;

– boundary normal flux, q̃.

The corresponding variational functional ΠAB is defined
as follows:

ΠAB =

Z
Ω

1
2

u;i u;i dΩ�

Z
Γ

q̃(u� ũ)dΓ�
Z

Γq

qũdΓ (13)

where, the boundary potential ũsatisfies the essential
boundary condition, i.e.,ũ=u on Γu.

By carrying out the variations it can be shown that:

δΠAB =

Z
Γ
(q� q̃)δudΓ�

Z
Ω

u;ii δudΩ

+

Z
Γq

(q̃�q)δũdΓ�
Z

Γ
(u� ũ)δq̃dΓ (14)

The vanishing of δΠAB for arbitrary variations δuin Ω,
δũ and δq̃ on Γ, with δũ = 0 on Γu, gives the following
Euler equations:

u;ii = 0; in Ω
u� ũ = 0; on Γ
q� q̃ = 0; on Γ
q̃�q = 0; on Γq

(15)

Consequently the solution of the problem is now given
in terms of the functions u, ũ and q̃, which makes δΠAB

stationary.

With the vanishing of δΠAB, one also has the following
equivalent integral equations:

Z
Γ
(q� q̃)δudΓ�

Z
Ω

u;ii δudΩ = 0 (16)

Z
Γ
(u� ũ)δq̃dΓ = 0 (17)

Z
Γq

(q̃�q)δũdΓ = 0 (18)

If we impose the flux boundary condition, q̃ = q, just the
same way as the essential boundary condition after the
matrices have been computed, the equation (18) will be
satisfied. So it can be ignored temporarily in the follow-
ing development.

It can be seen that the equation (16) and (17) holds in
any sub-domain, for example, in a sub-domain Ωs and its
boundary Γs and Ls (See Figure 1). The following devel-
oping idea is from Zhu (1999). Actually, to follow the
developing process in Zhu (1999), we use the following
weak forms on a sub-domain Ωs and its boundary Γs and
Ls to replace equation (16) and (17):

Z
Γs+Ls

(q� q̃)vdΓ�
Z

Ωs

u;ii vdΩ = 0 (19)

Z
Γs+Ls

(u� ũ)vdΓ = 0 (20)

where v is a test function. It should be noted further that
the above equations hold irrespective of the size and the
shape of Ωs and its boundary ∂Ωs. This is an impor-
tant observation, which forms the basis for the follow-
ing development. We now deliberately choose a simple
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Figure 1 : The local domain centered at a node sJ and
the source point of fundemental solution corresponding
to a node sI .

regular shape for Ωs. The most regular shape of a sub-
domain should be an n-dimensional sphere for a bound-
ary value problem defined on an n-dimensional space. In
the present paper, the sub-domain Ωs is chosen as the
intersection of the domain Ω and a circle centered at a
boundary node sJ (See Fig. 1).

In equation (19) and (20), ũ and q̃ on Γs are expressed
by equation (6) and (7), but ũ and q̃ on Ls has not been
defined yet. To solve this problem, we deliberately select
v such that all integrals over Ls vanish. This can be easily
accomplished by using the weight function in the MLS
approximation as v, with the radius d̂I of the support of
the weight function being replaced by the radius rJ of the
sub-domain Ωs, i.e.

vJ(Q) =

(
exp[�(dJ=cJ )

2]�exp[�(rJ=cJ)
2]

1�exp[�(rJ=cJ)2]
; 0 � dJ � rJ

0; dJ � rJ

(21)

where dJ is the distance between a point Q, in the domain
Ω, and the nodal point sJ . Therefore, v vanishes on Ls.

The u and q inside Ω and on Γ are defined as

u =
NN

∑
I=1

UIxI (22)

q =
NN

∑
I=1

∂UI

∂n
xI (23)

where UI is the fundamental solution with the source at a
point PI , which locates at the outside of the domain and is
corresponding to a node sI ; xI are unknown parameters;
NN is the total number of boundary nodes.

For 2-D potential problem, the fundamental solution is

UI =
1

2π
ln r(Q;PI) (24)

where Q and PI are the field point and the source point re-
spectively. And PI is determined by following equations

x(PI) = x(SI)+h�nx�SF
y(PI) = y(SI)+h�ny�SF

(25)

where x and y are coordinates; h is the mesh size; nx and
ny is the components of the outward normal direction to
the boundary at node PI; and SF is a scale factor. As
can be imagined, the scale factor, SF , plays an impor-
tant role in the performance of the present method. Too
small value for SF will lead to nearly-singular integrals
and thus inaccurate results; On the contrary, too large one
will lead to an ill-posed system of algebraic equations as
well. From our computations, the proper range for SF is
between 3:0 and 6:0.

As u is expressed by equation (22), the last integral in
the left hand in equation (19) vanishes. By substituting
equation (6), (7), (21), (22) and (23) into equation (19)
and (20), and omitting the vanished terms, one has:

n
∑

I=1

R
Γs

∂UI
∂n vJ(Q)xIdΓ =

n
∑

I=1

R
Γs

ΦI(s)vJ(Q)q̂IdΓ
n
∑

I=1

R
Γs

UIvJ(Q)xIdΓ =
n
∑

I=1

R
Γs

ΦI(s)vJ(Q)ûIdΓ
(26)

Using the above equations for all nodes, one can obtain
the following system of equations:
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Ux = Hq̂ (27)

V x = Hû (28)

where

UIJ =
Z

ΓJ
s

∂UI

∂n
vJ(Q)dΓ

VIJ =

Z
ΓJ

s

UIvJ(Q)dΓ

HIJ =
Z

ΓJ
s

ΦI(s)vJ(Q)dΓ

xT = [x1;x2; � � � ;xn]
q̂T = [q̂1; q̂2; � � � ; q̂n]
ûT = [û1; û2; � � � ; ûn]

The evaluation of the matrices Uand V is much more
simple in this approach than in BEM and BNM. No inte-
grations of singular functions are involved, as the source
points of fundamental solutions are determined by equa-
tions (25).

For a well-posed problem, either u or q are known at
each node on the boundary. However, transformations
between ûI and ũI , q̂I and q̃I must be performed due to
that the MLS interpolants lack the delta function property
of the usual BEM shape functions (Atluri et al. 1999).
For u prescribed edges, ûI can be obtained by

ûI =
N

∑
J=1

RIJũJ =
N

∑
J=1

RIJuJ (29)

and for q prescribed edges, q̂I can be obtained by

q̂I =
N

∑
J=1

RIJq̃J =
N

∑
J=1

RIJqJ (30)

where RIJ = [ΦJ(sI)]
�1. Therefore, by rearranging the

governing equations (27) and (28), one obtains the final
system in term of x only, and the unknown vector x is
obtained by solving the final equations system.

Potential u and flux q at any point inside domain Ω or
on boundary Γ are evaluated by equation (22) and (23)
without further integrations. Since u and q on boundary
Γ can be evaluated the same way as that inside domain,
the unknowns q̂ and û need not to be obtained and thus
the evaluation of inverse matrix V�1 is avoided contrary
to that in the Hybrid BNM (Zhang et al.).

From the above development, one can see that the present
method is a truly meshless one, as absolutely no bound-
ary elements are needed, either for interpolation pur-
pose or for integration purpose. No further integration
is needed in the ‘post-processing’ step.

4 Illustrative numerical results

A few illustrative numerical results from the RHBNM,
together with comparisons with exact solutions, follow.
In all cases, the Laplace equation ∇2u = 0 is solved, to-
gether with appropriate prescribed boundary conditions.
For the purpose of error estimation and convergence
studies, a ‘global’ L2 norm error, normalized by jujmax
is defined as

e =
1

jujmax

s
1
N

N

∑
i=1

(u(e)
i �u(n)i )2 (31)

where jujmax is the maximum value of u over N sample
points, the superscripts (e) and (n) refer to the exact and
numerical solutions, respectively.

In all examples, the size of support for weight function,
d̂I in equation (11), is taken to be 9:5h, with h being the
mesh size, and the parameter cI is taken to be such that
d̂I
Æ

cI is constant and equal to 4:0. The size of the local
domain (radius rJ) for each node is chosen as 1:0h in
all computations and the parameter cJ in equation (21) is
taken to be such that rJ

Æ
cJ is constant and equal to 4:0. In

all integrations, 5 Gauss points are used on each section
of two half-parts of Γs.

4.1 Dirichlet problem on a circle
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The example solved here is the Laplace equation on a
circle of radius 3 unit, centered at the origin (See Fig. 2).
The exact solution is

u = x (32)

A Dirichlet problem is solved, for which the essential
boundary condition is imposed on the whole circle. To
study the convergence of the present method, three reg-
ular meshes of 10, 20 and 40 nodes have been used.
Numerical results of u and q (with normal vector (1,0))
along the radius (form (0,0) to (3,0)) from the RHBNM
with SF = 5:0 and from the Hybrid BNM, together with
the exact solution, are shown in Fig. 3.

Results for potentials are in all case accurate. The in-
ternal fluxes from the Hybrid BNM, however, show con-
siderable error for points close to the boundary when a
small number of nodes are used. This is to be expected
as they are calculated as a superposition of fundamen-
tal solutions of higher order of singularity than the ones
used for the potentials (equations (22) and (23)) when the
source points of fundamental solution locate exactly at
the boundary nodes. The results improved considerably
when the RHBNM is used. In the RHBNM, it is very
appealing that very high accuracy can be achieved with a
small number of nodes, and the results is no more sensi-
tive to the proximity of the interior points to the boundary
whereas in the Hybrid BNM or other hybrid boundary el-
ement methods.

4.2 Dirichlet, Neumann and mixed problem on a
squire

The case of Laplace equation on a 2� 2 domain is pre-
sented as the second example, see Fig. 2. The exact so-
lution is a cubic polynomial

u =�x3� y3 +3x2y+3xy2 (33)

A Dirichlet problem and a Neumann problem are solved
for which the essential boundary condition and the nat-
ural boundary condition are imposed on all edges re-
spectively, and a mixed problem for which the essential
boundary condition is imposed on top and bottom edges
and the natural boundary condition is prescribed on left
and right edges of the domain.

Figure 4 : Relative errors of normal flux on the edge
(from (0,0) to (2,0)): a for Dirichlet problem, b for Neu-
mann problem, c for mixed problem
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Figure 3 : u and q along a radius (from (0,0) to (3,0)): a from Hybrid BNM. b from RHBNM
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The effect of the selection of the scale factor SF has been
studied on four different regular nodes arrangements: (a)
5 nodes on each edge; (b) 10 nodes on each edge; (c)
20 nodes on each edge; (d) 40 nodes on each edge, with
SF varying from 0.5 to 10. Fig. 4 shows the relative
errors (equation (31)) of normal flux on the edge (from
(0,0) to (2,0), 13 uniformly distributed sample points)
with different meshes. It is noted that the results for
all meshes are accurate enough when SF � 3:0. How-
ever, as SF grows beyond 8.5, results become unstable
for the meshes (b), (c) and (d). This implies that the
equations (27) and (28) are approaching nearly ill-posed.
Actually, further computations of this example show that
the biggest values of SF that ensure the RHBNM non-
degenerate are 11.0, 11.5, 15.5 and 32.5 for the meshes
(a), (b), (c) and (d), respectively, and these values are
independent of boundary conditions while dependent on
the domain geometry and meshing.

Figure 5 : Relative errors and convergence rates for
Dirichlet, Neumann and mixed problems.

The convergence of the method has also been studied on
the four nodes arrangements with SF = 5:0. The results
of relative errors (equation (31)) and convergence of po-
tential on the diagonal (from (0,0) to (2,2), 19 uniformly
distributed sample points) are shown in Fig. 5, and nu-
merical results of normal flux on the edge (from (0,0) to
(2,0)) from the RHBNM when 5 nodes are used on each
edge, together with the exact solution are shown in Fig.
6. It can be seen that the present RHBNM has high rates
of convergence and the numerical results almost repro-
duce the exact solution exactly.

Figure 6 : q(x) at y = 0 for Dirichlet, Neumann and
mixed problems (5 nodes on each edge are used)

4.3 Potential flow

The third example, which has been described in Atluri
et al. (1998), Zhu et al. (1998) and Zhu (1999), is the
problem of a potential flow around a cylinder of radius
1 in an infinite domain, u represents the stream function.
Due to the symmetry of the problem, only a part, 0� x�
4 and 0 � y � 2, of the upper left quadrant of the field is
modeled as shown in Fig. 2. The exact solution for this
problem is given by

u = y

�
1�

a2

y2 +(x�L)2

�
(34)

Figure 8 : Relative errors and convergence rates for the
potential flow problem



A new regular hybrid boundary node method 11

Figure 7 : Flow around a cylinder; nodal arrangement: (a) 26 nodes; (b) 52 nodes; (c) 104 nodes

The prescribed u and q along all boundaries are shown
in Fig. 2. The essential boundary condition on the left
and top edges is imposed according to the exact solution.
The nodal arrangements are shown in Fig. 7.

The effect of SF has also been studied in this problem.
In this case, the value for SF varies from 0.5 to 6.5 and
the results of relative errors (equation (31)) of potential
on the diagonal (from (0,0) to (4,2), 19 uniformly dis-
tributed sample points) are shown in Fig. 8. It is appeal-
ing that the results are most accurate for all SF values.
The RHBNM, if anything, is somewhat flexible.

In this example, the biggest values of SF that ensure
the RHBNM non-degenerate for the meshes (a), (b) and
(c) are 13.5, 6.5 and 8.0, respectively. Unfortunately, it
seems that no simple rule exists between the biggest SF
value and the nodes arrangement. Further work is re-
quired in this area.

High rates of convergence can also be observed in Fig. 8.
Numerical results along the arc (from (3,0) to (4,1)) from

Figure 9 : q(θ) along the arc with different node arrange-
ments

the RHBNM with SF = 5:0, together with the exact so-
lution, are shown in Fig. 9. The numerical results agree
excellently with the exact solutions again.

5 Conclusions and discussion

A new type of regular hybrid boundary node method has
been presented in this paper. It is based on a hybrid
model that involves three types of independent variables,
i.e. potentials and normal fluxes on the boundary and
potentials inside the domain, and coupled with the MLS
interpolation scheme over the boundary variables. Com-
pared with the MLBIE and MLPG, the new approach has
the well-known dimensionality of the BEM, e.g. for a 3-
D object, only randomly distributed nodal points are re-
quired to be constructed on the 2-D bounding surface of a
body; compared with the conventional BEM, it is a mesh-
less method, only requires a nodal data structure on the
bounding surface of the domain to be solved; compared
with the BNM, it is a truly meshless method, absolutely
no cells are needed either for interpolation purposes or
for integration purposes.

Numerical examples have shown the accuracy and con-
vergence of the results. The solution is most accurate
for the potentials and fluxes on the boundary and in the
domain. High rates of convergence have been achieved.
And high accuracy can be obtained with a small number
of nodes.

In contrast with the conventional BEM, reduced to the
solution of the singular-integral equations of the second
kind, the RHBNM leads to regular-integral equation of
the first kind. No singularities are involved, the evalua-
tion of variables at internal points does not demand any
integration as in the conventional BEM or the BNM, and
the serious “boundary layer effect” in the Hybrid BNM
is largely circumvented.
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However, the outside assignment of the source points of
the fundamental solutions causes some new problems,
for example, how to choose the value of the scale fac-
tor, SF? Where to put the source points when a concave
boundary, a crack for example, is considered? The an-
swer for the first question is only an empirical recom-
mendation by now, just as the other constant parameters
in equations (11) and (21). For the second question, the
multi-domain approach is recommended. Actually, like
the BEM, if the RHBNM is to be developed to solve large
scale and complicated structures in practical engineering,
it must be coupled with the Multi-domain and Multi-pole
method (Popov et al., 2001). And these are planned in-
vestigations for the future.

Though some drawbacks exist, e.g. many constant pa-
rameters have to be determined by experience, the ad-
vantages of the RHBNM, such as meshless nature, very
high accuracy, high convergence rates and no singular-
ities etc., are so attractive that this method is certainly
worthy of attention.
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